Radar Detection of UHECR Air Showers at the Telescope Array

John Belz, University of Utah
32nd International Cosmic Ray Conference
Beijing, 17 August 2011
The TARA Project

(BNL, Kansas, Nebraska, NIPR, ICRR, Utah, Utah State)

and the Telescope Array Collaboration

Support: US NSF-PHY, NSF-MRI
Utah VP for Research, Dean College of Science
Japan Grants-in-Aid for “Exploratory Research”
Salt Lake City TV stations KUTV, ABC4
Bistatic Radar at Telescope Array

- Air shower plasma should reflect low-VHF (~50 MHz) radiation (Blackett and Lovell, 1941).
- **BUT** most scattered power is in the forward direction:

Two-station (“bistatic”) radar preferable!
- Low-cost remote sensing technique?
- Investigating at Telescope Array with donated analog television equipment.
Station WF2XHR: Transmitter

“Channel 2” transmitter donated by KUTV-2, broadcasting 54.1 MHz sine wave at 2 kW.

Antenna mast and 6-meter Yagi broadcasting towards Telescope Array observatory
Receiver Station at “Long Ridge”

- Array of log-periodic antennas (low-VHF)
- Software-defined radio receivers
- Triggering:
 - Fluorescence Detector, readout at 12.5 Ms/s.
 - Self threshold trigger, readout at 6.25 Ms/s.
What do we Expect?

- Shower segments contribute to received power according to \textit{bistatic radar equation}:

\[P_R = P_T \times \left(\frac{G_T}{4\pi R_T^2} \right) \sigma \times \left(\frac{G_R}{4\pi R_R^2} \right) \left(\frac{\lambda^2}{4\pi} \right) \]

- Add amplitudes to take into account phasing:

\[V = \sqrt{P \cdot Z_i \sin(\omega t - \phi)} \]

- Details: Poster #1315, \textit{Forward Scattering Radar for Ultra High Energy Cosmic Rays}
Signal Characteristics

Signal-to-Noise, 2 kW TX

- Prediction for received power for 10^{18}, 10^{19}, 10^{20} eV showers, 30 deg from zenith, ideal TA geometry and current antenna gain.
- Horizontal line: Galactic noise floor (4 MHz B.W.)

Phase Modulation

- Predicted signal for 10^{19} eV shower, 30 deg from zenith; frequency vs time.
- Rapid movement of “target” produces Doppler-like frequency shift.
- “Chirp” = Unique signature for air shower echoes!
SD/Self-triggered Radar Coincidence Search, ~3 Months Data at 2 kW

- Event timing good to 100 microseconds
- Self-trigger rate ~1 Hz
- ~6k Surface Detector events > 1 EeV.
- No coincidences above background seen (or expected).
Fluorescence-triggered Coincidence Search, ~3 Months Data at 2 kW

- Timing good to 100 microseconds.
- FD-trigger rate ~2 Hz
- Search waveforms corresponding to good hybrid triggers for activity.
- No activity above background seen (or expected).

15 EeV Event, near “1st diffractive maximum”
Upcoming Enhancements...

* Factor of 20+ increase in transmitter (TX) power (US-NSF/MRI)
* High-gain TX antenna; another factor of ~10
* Smart triggering:
 - Real-time “matched filter” comparison of waveform to chirp expectation (FPGA)
 - detection for S/N < 1...

Signal-to-Noise, 20 kW TX
Matched Filter Performance: Lab

Input 3.5 MHz/microsec “chirp”

1 MHz/microsec filter output

3.5 MHz/microsec filter output

10 dB SNR
Matched Filter Performance: Lab

Input 3.5 MHz/microsec “chirp”

1 MHz/microsec filter output

3.5 MHz/microsec filter output

5 dB SNR
Matched Filter Performance: Lab

Input 3.5 MHz/microsec “chirp”

1 MHz/microsec filter output

3.5 MHz/microsec filter output

0 dB SNR
Matched Filter Performance: Lab

Input 3.5 MHz/microsec “chirp”

1 MHz/microsec filter output

3.5 MHz/microsec filter output

-5 dB SNR
Matched Filter Performance: Lab

Received signal under -10 dB signal-to-noise ratio

Input 3.5 MHz/microsec “chirp”

1 MHz/microsec filter output

3.5 MHz/microsec filter output

-10 dB SNR
ELS observation

Observation for the reflected radio from ELS shower to confirm the method

- Set the observer to the roof of BR station
- Radio path: CRC - ELS - BR
- Receiver: Five-element Yagi antenna
 - Design is fixed (see other file)
- Also we can measure the cross-section
 - Distance: CRC-BR >> ELS-BR
 - Can measure the power of coming radio from CRC by seeing to CRC
 - Cross-section is obtained by the ratio of detected power: seeing to ELS / seeing to CRC
- For this test, E-Plane of trans. wave should be vertical.
- Geometry b/w BR and CRC is better for radio transmission.
- The direction b/w BR-CRC and BR-ELS is almost 90 degrees !!
Conclusions

- Search for radar echoes of UHECR EAS in progress at Telescope Array (TARA).
- Upgrades to transmitter power (> 40 kW), transmitter antenna, smart triggering DAQ should bring us above detection threshold.
- Potential remote sensing technique; enhanced aperture for future UHECR studies.